Distinct patterns of phosphatidylserine localization within the Rab11a-containing recycling system
نویسندگان
چکیده
The Rab11 GTPases and Rab11 family-interacting proteins (Rab11-FIPs) define integrated yet distinct compartments within the slow recycling pathway. The lipid content of these compartments is less well understood, although past studies have indicated phosphatidylserine (PS) is an integral component of recycling membranes. We sought to identify key differences in the presence of PS within Rab and Rab11-FIP containing membranes. We used live cell fluorescence microscopy and structured illumination microscopy to determine whether the previously published LactC2 probe for PS displays differential patterns of overlap with various Rab GTPases and Rab11-FIPs. Selective overlap was observed between the LactC2 probe and Rab GTPases when co-expressed in HeLa cells. Rab11-FIP1 proteins consistently overlapped with LactC2 along peripheral and pericentriolar compartments. The specificity of Rab11-FIP1 association with LactC2 was further confirmed by demonstrating that additional Rab11-FIPs (FIP2, FIP3, and FIP5) exhibited selective association with LactC2 containing compartments. Live cell dual expression studies of Rab11-FIPs with LactC2 indicated that PS is enriched along tubular compartments of the Rab11a-dependent recycling system. Additionally, we found that the removal of C2 domains from the Rab11-FIPs induced an accumulation of LactC2 probe in the pericentriolar region, suggesting that inhibition of trafficking through the recycling system can influence the distribution of PS within cells. Finally, we confirmed these findings using structured illumination microscopy suggesting that the overlapping fluorescent signals were on the same membranes. These results suggest distinct associations of Rab GTPases and Rab11-FIPs with PS-containing recycling system membrane domains.
منابع مشابه
Rab11-FIP2 regulates differentiable steps in transcytosis.
Transcytosis through the apical recycling system of polarized cells is regulated by Rab11a and a series of Rab11a-interacting proteins. We have identified a point mutant in Rab11 family interacting protein 2 (Rab11-FIP2) that alters the function of Rab11a-containing trafficking systems. Rab11-FIP2(S229A/R413G) or Rab11-FIP2(R413G) cause the formation of a tubular cisternal structure containing ...
متن کاملRab11-family interacting proteins define spatially and temporally distinct regions within the dynamic Rab11a-dependent recycling system
The Rab11-family interacting proteins (Rab11-FIPs) facilitate Rab11-dependent vesicle recycling. We hypothesized that Rab11-FIPs define discrete subdomains and carry out temporally distinct roles within the recycling system. We used live-cell deconvolution microscopy of HeLa cells expressing chimeric fluorescent Rab11-FIPs to examine Rab11-FIP localization, transferrin passage through Rab11-FIP...
متن کاملMyosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3.
Cells use multiple pathways to internalize and recycle cell surface components. Although Rab11a and Myosin Vb are involved in the recycling of proteins internalized by clathrin-mediated endocytosis, Rab8a has been implicated in nonclathrin-dependent endocytosis and recycling. By yeast two-hybrid assays, we have now demonstrated that Myosin Vb can interact with Rab8a, but not Rab8b. We have conf...
متن کاملRab GTPase-Myo5B complexes control membrane recycling and epithelial polarization.
The Rab GTPases are the largest family of proteins regulating membrane traffic. Rab proteins form a nidus for the assembly of multiprotein complexes on distinct vesicle membranes to regulate particular membrane trafficking pathways. Recent investigations have demonstrated that Myosin Vb (Myo5B) is an effector for Rab8a, Rab10, and Rab11a, all of which are implicated in regulating different path...
متن کاملIntracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells.
Many viruses use the host trafficking system at a variety of their replication steps. Measles virus (MV) possesses a nonsegmented negative-strand RNA genome that encodes three components of the ribonucleoprotein (RNP) complex (N, P, and L), two surface glycoproteins, a matrix protein, and two nonstructural proteins. A subset of immune cells and polarized epithelial cells are in vivo targets of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014